If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+1064x=0
a = -16; b = 1064; c = 0;
Δ = b2-4ac
Δ = 10642-4·(-16)·0
Δ = 1132096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1132096}=1064$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1064)-1064}{2*-16}=\frac{-2128}{-32} =66+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1064)+1064}{2*-16}=\frac{0}{-32} =0 $
| 8u+3-u=-2(u-4)+1 | | 8+4x=-10+× | | 378.72=180+.96x | | -47-2x=-11 | | 6u+6=3(u-2) | | -12x-6=12x+6 | | |x+3|=7 | | 25x+-5x=-4x | | k+20/5=6 | | 1/6(36x-48)=1/8(32x+64) | | F(x)=3x/x+7 | | -3(4c-1)+4=13 | | 9a-9=27+7a | | 2x/7=14 | | 8n-40=12 | | -11+2+3v-3v=7+8v | | 3(v-3)-6v=18 | | 341=-7(8x+5)-5 | | k+205=6 | | -4/x+3=15 | | k+205= 6 | | 9s+14(2779-s)=32236 | | z=81=9z-7 | | -235=-5(7x-2) | | 5v(9v-5)=0 | | 27+4x=-7(1+3x) | | -7=7x+7(2x-19) | | 3w+15=69 | | 2-15x=5(-3x+4)-18 | | 1-4=4t+8 | | 8n=15=25 | | (2^3x-5)=52 |